Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 12(3)2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-35327548

RESUMEN

Helicobacter pylori (H. pylori) expresses the serine protease and chaperone High temperature requirement A (HtrA) that is involved in periplasmic unfolded protein stress response. Additionally, H. pylori-secreted HtrA directly cleaves the human cell adhesion molecule E-cadherin leading to a local disruption of intercellular adhesions during pathogenesis. HtrA-mediated E-cadherin cleavage has been observed in response to a broad range of pathogens, implying that it is a prevalent mechanism in humans. However, less is known whether E-cadherin orthologues serve as substrates for bacterial HtrA. Here, we compared HtrA-mediated cleavage of human E-cadherin with murine, canine, and simian E-cadherin in vitro and during bacterial infection. We found that HtrA targeted mouse and dog E-cadherin equally well, whereas macaque E-cadherin was less fragmented in vitro. We stably re-expressed orthologous E-cadherin (Cdh1) in a CRISPR/Cas9-mediated cdh1 knockout cell line to investigate E-cadherin shedding upon infection using H. pylori wildtype, an isogenic htrA deletion mutant, or complemented mutants as bacterial paradigms. In Western blot analyses and super-resolution microscopy, we demonstrated that H. pylori efficiently cleaved E-cadherin orthologues in an HtrA-dependent manner. These data extend previous knowledge to HtrA-mediated E-cadherin release in mammals, which may shed new light on bacterial infections in non-human organisms.


Asunto(s)
Helicobacter pylori , Serina Proteasas , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Perros , Helicobacter pylori/metabolismo , Mamíferos/metabolismo , Ratones , Serina Endopeptidasas/metabolismo , Serina Proteasas/genética , Serina Proteasas/metabolismo , Temperatura
2.
Int J Mol Sci ; 23(5)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35269560

RESUMEN

Gastric cancer is a leading cause of cancer-related death, and a large proportion of cases are inseparably linked to infections with the bacterial pathogen and type I carcinogen Helicobacter pylori. The development of gastric cancer follows a cascade of transformative tissue events in an inflammatory environment. Proteases of host origin as well as H. pylori-derived proteases contribute to disease progression at every stage, from chronic gastritis to gastric cancer. In the present article, we discuss the importance of (metallo-)proteases in colonization, epithelial inflammation, and barrier disruption in tissue transformation, deregulation of cell proliferation and cell death, as well as tumor metastasis and neoangiogenesis. Proteases of the matrix metalloproteinase (MMP) and a disintegrin and metalloproteinase domain-containing protein (ADAM) families, caspases, calpain, and the H. pylori proteases HtrA, Hp1012, and Hp0169 cleave substrates including extracellular matrix molecules, chemokines, and cytokines, as well as their cognate receptors, and thus shape the pathogenic microenvironment. This review aims to summarize the current understanding of how proteases contribute to disease progression in the gastric compartment.


Asunto(s)
Infecciones por Helicobacter/inmunología , Helicobacter pylori/patogenicidad , Péptido Hidrolasas/metabolismo , Neoplasias Gástricas/patología , Proteínas Bacterianas/metabolismo , Progresión de la Enfermedad , Regulación de la Expresión Génica , Infecciones por Helicobacter/complicaciones , Helicobacter pylori/inmunología , Humanos , Metaloproteasas/metabolismo , Proteolisis , Serina Proteasas/metabolismo , Neoplasias Gástricas/microbiología
3.
Cell Commun Signal ; 19(1): 108, 2021 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-34742300

RESUMEN

BACKGROUND: High temperature requirement A (HtrA) is an active serine protease secreted by the group-I carcinogen Helicobacter pylori (H. pylori). The human cell adhesion protein and tumor suppressor E-cadherin (hCdh1) expressed on the surface of gastric epithelial cells was identified as the first HtrA substrate. HtrA-mediated hCdh1 cleavage and subsequent disruption of intercellular adhesions are considered as important steps in H. pylori pathogenesis. In this study, we performed a proteomic profiling of H. pylori HtrA (HpHtrA) to decipher the complex mechanism of H. pylori interference with the epithelial barrier integrity. RESULTS: Using a proteomic approach we identified human desmoglein-2 (hDsg2), neuropilin-1, ephrin-B2, and semaphorin-4D as novel extracellular HpHtrA substrates and confirmed the well characterized target hCdh1. HpHtrA-mediated hDsg2 cleavage was further analyzed by in vitro cleavage assays using recombinant proteins. In infection experiments, we demonstrated hDsg2 shedding from H. pylori-colonized MKN28 and NCI-N87 cells independently of pathogen-induced matrix-metalloproteases or ADAM10 and ADAM17. CONCLUSIONS: Characterizing the substrate specificity of HpHtrA revealed efficient hDsg2 cleavage underlining the importance of HpHtrA in opening intercellular junctions. Video Abstract.


Asunto(s)
Proteínas Bacterianas/genética , Desmogleína 2/genética , Infecciones por Helicobacter/genética , Helicobacter pylori/genética , Interacciones Huésped-Patógeno/genética , Serina Proteasas/genética , Proteína ADAM10/genética , Proteína ADAM17/genética , Efrina-B2/genética , Células Epiteliales/microbiología , Infecciones por Helicobacter/microbiología , Helicobacter pylori/patogenicidad , Humanos , Neuropilina-1/genética , Proteómica/métodos , Semaforinas/genética
4.
Sci Rep ; 10(1): 10563, 2020 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-32601479

RESUMEN

Helicobacter pylori (H. pylori) secretes the chaperone and serine protease high temperature requirement A (HtrA) that cleaves gastric epithelial cell surface proteins to disrupt the epithelial integrity and barrier function. First inhibitory lead structures have demonstrated the essential role of HtrA in H. pylori physiology and pathogenesis. Comprehensive drug discovery techniques allowing high-throughput screening are now required to develop effective compounds. Here, we designed a novel fluorescence resonance energy transfer (FRET) peptide derived from a gel-based label-free proteomic approach (direct in-gel profiling of protease specificity) as a valuable substrate for H. pylori HtrA. Since serine proteases are often sensitive to metal ions, we investigated the influence of different divalent ions on the activity of HtrA. We identified Zn++ and Cu++ ions as inhibitors of H. pylori HtrA activity, as monitored by in vitro cleavage experiments using casein or E-cadherin as substrates and in the FRET peptide assay. Putative binding sites for Zn++ and Cu++ were then analyzed in thermal shift and microscale thermophoresis assays. The findings of this study will contribute to the development of novel metal ion-dependent protease inhibitors, which might help to fight bacterial infections.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Evaluación Preclínica de Medicamentos/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas Bacterianas/metabolismo , Cadherinas/metabolismo , Cobre/metabolismo , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/metabolismo , Helicobacter pylori/metabolismo , Chaperonas Moleculares/metabolismo , Péptidos/metabolismo , Proteómica/métodos , Serina Endopeptidasas/metabolismo , Serina Proteasas/metabolismo , Zinc/metabolismo
5.
BMC Microbiol ; 19(1): 255, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31726993

RESUMEN

BACKGROUND: High temperature requirement A (HtrA) is a widely expressed chaperone and serine protease in bacteria. HtrA proteases assemble and hydrolyze misfolded proteins to enhance bacterial survival under stress conditions. Listeria monocytogenes (L. monocytogenes) is a foodborne pathogen that induces listeriosis in humans. In previous studies, it was shown that deletion of htrA in the genome of L. monocytogenes increased the susceptibility to cellular stress and attenuated virulence. However, expression and protease activity of listerial HtrA (LmHtrA) were never analyzed in detail. RESULTS: In this study, we cloned LmHtrA wildtype (LmHtrAwt) and generated a proteolytic inactive LmHtrASA mutant. Recombinant LmHtrAwt and LmHtrASA were purified and the proteolytic activity was analyzed in casein zymography and in vitro cleavage assays. LmHtrA activity could be efficiently blocked by a small molecule inhibitor targeting bacterial HtrA proteases. The expression of LmHtrA was enhanced in the stationary growth phase of L. monocytogenes and significantly contributed to bacterial survival at high temperatures. CONCLUSIONS: Our data show that LmHtrA is a highly active caseinolytic protease and provide a deeper insight into the function and mechanism, which could lead to medical and biotechnological applications in the future.


Asunto(s)
Caseínas/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Listeria monocytogenes/crecimiento & desarrollo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Microbiología de Alimentos , Regulación Bacteriana de la Expresión Génica , Proteínas de Choque Térmico/química , Respuesta al Choque Térmico , Listeria monocytogenes/patogenicidad , Viabilidad Microbiana , Pliegue de Proteína , Multimerización de Proteína , Proteolisis , Regulación hacia Arriba
6.
Cell Microbiol ; 20(6): e12845, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29582532

RESUMEN

The HtrA family of chaperones and serine proteases is important for regulating stress responses and controlling protein quality in the periplasm of bacteria. HtrA is also associated with infectious diseases since inactivation of htrA genes results in significantly reduced virulence properties by various bacterial pathogens. These virulence features of HtrA can be attributed to reduced fitness of the bacteria, higher susceptibility to environmental stress and/or diminished secretion of virulence factors. In some Gram-negative and Gram-positive pathogens, HtrA itself can be exposed to the extracellular environment promoting bacterial colonisation and invasion of host tissues. Most of our knowledge on the function of exported HtrAs stems from research on Helicobacter pylori, Campylobacter jejuni, Borrelia burgdorferi, Bacillus anthracis, and Chlamydia species. Here, we discuss recent progress showing that extracellular HtrAs are able to cleave cell-to-cell junction factors including E-cadherin, occludin, and claudin-8, as well as extracellular matrix proteins such as fibronectin, aggrecan, and proteoglycans, disrupting the epithelial barrier and producing substantial host cell damage. We propose that the export of HtrAs is a newly discovered strategy, also applied by additional bacterial pathogens. Consequently, exported HtrA proteases represent highly attractive targets for antibacterial treatment by inhibiting their proteolytic activity or application in vaccine development.


Asunto(s)
Bacterias/patogenicidad , Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno , Chaperonas Moleculares/metabolismo , Serina Endopeptidasas/metabolismo , Factores de Virulencia/metabolismo , Animales , Humanos , Estrés Fisiológico , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...